Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand.
نویسندگان
چکیده
The bone loss induced by ovariectomy (ovx) has been linked to increased production of osteoclastogenic cytokines by bone marrow cells, including T cells and stromal cells (SCs). It is presently unknown whether regulatory interactions between these lineages contribute to the effects of ovx in bone, however. Here, we show that the T-cell costimulatory molecule CD40 ligand (CD40L) is required for ovx to expand SCs; promote osteoblast proliferation and differentiation; regulate the SC production of the osteoclastogenic factors macrophage colony-stimulating factor, receptor activator of nuclear factor-κB ligand, and osteoprotegerin; and up-regulate osteoclast formation. CD40L is also required for ovx to activate T cells and stimulate their production of TNF. Accordingly, ovx fails to promote bone loss and increase bone resorption in mice depleted of T cells or lacking CD40L. Therefore, cross-talk between T cells and SCs mediated by CD40L plays a pivotal role in the disregulation of osteoblastogenesis and osteoclastogenesis induced by ovx.
منابع مشابه
Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway
Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mec...
متن کاملT cells potentiate PTH-induced cortical bone loss through CD40L signaling.
Parathyroid hormone (PTH) promotes bone catabolism by targeting bone marrow (BM) stromal cells (SCs) and their osteoblastic progeny. Here we show that a continuous infusion of PTH that mimics hyperparathyroidism fails to induce osteoclast formation, bone resorption, and cortical bone loss in mice lacking T cells. T cells provide proliferative and survival cues to SCs and sensitize SCs to PTH th...
متن کاملIn Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation
Bone remodeling, a physiological process characterized by bone formation by osteoblasts and bone resorption by osteoclasts, is important for the maintenance of healthy bone in adult humans. Osteoclasts play a critical role in bone erosion and osteoporosis and are bone-specific multinucleated cells generated through differentiation of monocyte/macrophage lineage precursors. Receptor activator of...
متن کاملImipramine Protects against Bone Loss by Inhibition of Osteoblast-Derived Microvesicles
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to increased membrane fluidity and facilitates MV generation...
متن کاملPeripheral cannabinoid receptor, CB2, regulates bone mass.
The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2011